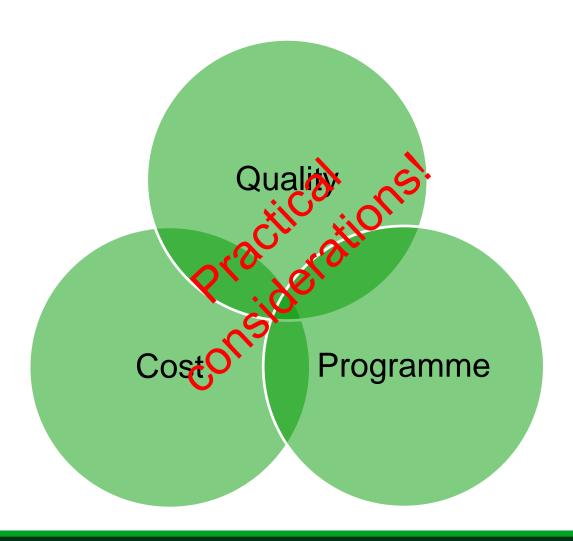


GROUND INVESTIGATION FOR HS2

Nick Sartain, Lead Geotechnical Engineer, HS2 nick.Sartain@hs2.org.uk

INTRODUCTION



DRIVERS OF DESIGN

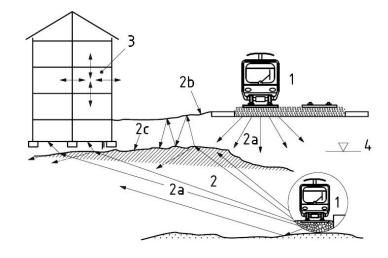
STRATEGY

Advanced and research level work

Targeted high quality but standardised GI

Ground profiling for detailed stratigraphy correlation between investigation locations

TECHNICAL TOPICS – SMALL STRAIN PARAMETERS



Various design requirements

- Noise & vibration
- Geodynamics
- Advanced analyses

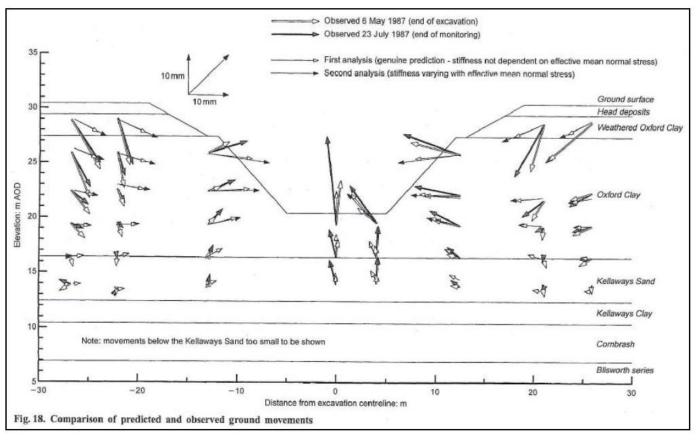
Various possible solutions:

- Crosshole seismic
- Downhole seismic
- Seismic cones
- Small strain laboratory testing
- MASW
- CSW

Key

- 1 source
- 2 propagation:
 - 2 a body waves (compression, shear)
 - 2 b surface waves (e.g. Rayleigh, Love)
 - 2 c interface waves (e.g. Stoneley)
- 3 receiver (vibration, re-radiated noise)
- 4 water table

NOTE The components of the system comprising source, propagation and receiver are interdependent.


Figure 1 — Example of source, propagation and receiver system

Ref BS ISO 14937-1

TECHNICAL TOPICS – LINE OF ROUTE

From Hird CC and Pierpoint ND, 1997, Geotechnique 47, No 3, 665-691

TECHNICAL TOPICS – LINE OF ROUTE

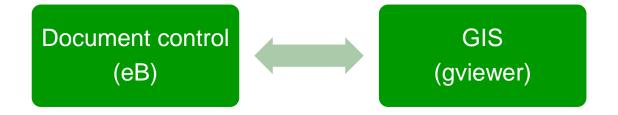
Parameter	Symbol	Description	In-situ tests for derivation	In-situ tests for derivation
Stiffness	G_0	Shear modulus at very small strains	Crosshole Seismic, Downhole Seismic, Suspension Logging, Seismic Cone, Seismic Dilatometer	Bender element Resonant column
	G ₅₀	Secant stiffness at 50% yield strain		Stress path testing – Anisotropically consolidated undrained triaxial extension with local strain measurements Compression with unload-reload loop
	E _{ur}	Elastic unloading/reloading stiffness	Self Boring Pressuremeter, High Pressure Dilatometer, Cone Pressuremeter	
	E _{oed}	Tangent stiffness		Oedometer
	Y 0.7	Shear strain at which $G_{sec} = 0.722G_0$.	Self Boring Pressuremeter, High Pressure Dilatometer, Cone Pressuremeter	Bender element Resonant column
Strength	ф'	Effective friction angle		Anisotropically consolidated undrained triaxial
	c'	Drained cohesion		Anisotropically consolidated undrained triaxial
Stress history	K ₀	In situ coefficient of earth pressure (or stress ratio)	Self Boring Pressuremeter, Seismic Dilatometer	High Pressure Oedometer
Permeability	$\mathbf{k}_{\mathrm{h}},\mathbf{k}_{\mathrm{v}}$	Permeability	Variable head tests, Self Boring Permeameter, Pumping Test, Self Boring Pressuremeter, CPTu (piezocone)	Rowe Cell – simulation of stress history and stress state Oedometer Advanced triaxial tests

TECHNICAL TOPICS – LOGGING

Use of Formation Experts:

- Consistency
- Opportunities for learning
- Good feedback so far Identification of geo-hazards
- Glacial effects
- Geomorphological clues

There is no substitute for having high quality people on site



TECHNICAL TOPICS - DATA

GI is the first step towards creating a digital environment

LOOK TO THE FUTURE



More detail

New geology

New technical topics

- Karst
- Mine workings
- Contaminated land
- Landfill
- Urban GI
- Remote monitoring

LOOK TO THE FUTURE

CONCLUSION

